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J .  PHYS.  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Relativistic corrections to S,, for atomic hydrogen 

IN L. BARTLETT and E. A. POWER 
University College London 
MS.  receioed 24th January 1969, in reoisedform 17th March 1969 

Abstract. It is shown that, to order a2, 

for the dipole sum over Dirac states of the hydrogen atom. This compares with the 
value i for the sum over Schrodinger states. 

1. Introduction 

is 
The  interaction energy between two ground-state atoms separated by a large distance R 

0: is the fine-structure constant and distances and energies are measured in atomic units. 
S, is defined as the dipole sum 

S ,  = C (Ej-E,),fj ( 2 )  
where 

is the oscillator strength. The potential U,  in equation (1) is the retarded asymptotic 
energy calculated by Casimir and Polder (1948) from quantum electrodynamics and 
replaces at large R the London-van der Waals energy (London 1930) 

C6(a, b, U6(a, b) = - ___ 
R6 (3) 

which is calculated from Schrodinger wave mechanics. 
The  calculation of interatomic potentials for two ground-state hydrogen atoms has 

reached a stage of considerable sophistication and accuracy. Hirschfelder and Meath 
(1967) give the interaction energy in the region 8ao to 200a0 in terms of an asymptotic 
series in R-l. The energy, again in atomic units, is 

EH-H = . . . -3986(1 +0.00j4)R-l1 
-(1135 +2150)(1+0.0049)R-10 
- 124*4( 1 + 0*0038)R-* 
- 6.499 027( 1 + 0.002 723)R-6 
+ 0 * 4 6 2 8 ~ t ~ R - ~  
+ ( W~R' - 0 * 3 7 1 4 ~ ~ ) R - ~  + . . . . (4) 

The terms are : R-ll the third-order dispersion energy dipole-quadrupole-dipole, 
- 1 135R-1° second-order quadrupole-quadrupole, - 2150R-10 octupole-dipole, R-* 
quadrupole-dipole, R-6  the London dispersion (equation (3)), R-4 mixed dipole-Breit 
interaction, spin-spin ( W3 = 0 for gerade states, + 1 for ungerade states) and part 
of the Casimir-Polder potential. The  second terms in the brackets, of the order of 0*So/,, 
are mass polarization corrections. One notes that the relativistic corrections are important 
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for powers of R less singular than R-6. The leading London term is now known to seven- 
figure accuracy (O’Carroll and Sucher 1968), so it is important to know if there are implicit 
relativistic corrections due to the Dirac nature of the electron clouds as well as those 
known and due to relativistic-retardation effects. The latter are the terms containing a 
in equation (4) for the range of R up to 200a,. This paper is aimed at improving the 
accuracy of the coefficients in the intermolecular potentials by finding relativistic corrections 
to S-,. These are separate correction terms from those arising from the transverse photon 
exchange in the retardation region. 

For atomic hydrogen, as calculated from Schrodinger’s equation, S - ,  is exactly 4.5, 
corresponding to a polarization +ao3. One of the easiest ways of obtaining this is by 
Dalgarno’s method (Dalgarno and Lewis 1955). Here S-2 is calculated by the analogue 
of this method from the Dirac equation for the hydrogen atom. The  result differs from 
4.5 by terms of the order of (e2/Ac)2 as would be expected, since 7i2/c2 for an electron in a 
Bohr orbit is of the order of (e2/Ac)2.  The calculation gives 

S-2 = 4.499 752 . . . ( 5 )  
for the case where m = 4 relative to the x axis as defined in equation (3).  The ground 
state of hydrogen lS, ,, has quantum numbers n = 1, I = O , j  = 4 with magnetic quantum 
number m = -+&. 

2. Method 

for the perturbed part of the wave function. If x is square integrable and satisfies 
The method called after Dalgarno is to solve an inhomogeneous differential equation 

( H -  E0)x = 4 0  (6) 
where H is the appropriate Hamiltonian, E ,  the ground-state energy and y5, the unperturbed 
ground-state wave function, then 

(O lZ l j )  ( j l Z l0 )  
s-2 = 2 2  

j Ej-E,  

One notes that the square integrable solution of the homogeneous equation ( H  - E,)? = 0 
is +, and this gives no contribution to equation (7). Thus a particular integral of equation (6) 
is all that is required. 

For the Schrodinger equation in atomic units one has 

and 

S O  

S - ,  = ! / ( : + I )  ~ o s ~ e e - ~ ~ r ~ d r d R  
x 

= 4.5. 
If the substitution 

= cos eh(r)+, 

is made for x in equation (6) the ordinary differential equation for h(r) is 

(13) rh” + (4 - 2r)h ’ - 2h = - 2r.  
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Equation (13) has the general solution 

Y 

If the A term is used in x the integral equation ( 7 )  diverges. Although the B term if used 
in x gives a finite value for this integral, the corresponding x is not square integrable. 
One knows in fact that there are no square integrable solutions of the homogeneous equa- 
tion corresponding to equation (13) or else there would be a p state of hydrogen with 
energy E,. Hence the only well-behaved solution of equation (13)  is &r+ 1, which corres- 
ponds to the result for x used in equation (9). 

For the Dirac equation, with m = + 4, 

where 

9. 
f(r) = - - - g ( y )  

y = (1 - 9 . y  

1 +Y 
and 

and again, exactly as before, 

S-2  = 2 1 a*Q d V  (19) 

(20) 

(21) 

where 
Q = z+,, and 2 is the transpose of x. 

The analogue of equation (6) is now the set of coupled differential equations 

(a . p c + p m c 2 +  V-Eo)x = Q 

where a, /3 are the Dirac matrices. It is not difficult to separate out the angular behaviour 
of the spinor x (see Brown et al. 1955). There are two four-spinors, both behaving as 
zYOo in their first elements: 

(22) x'l' = 

and 
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where qi.(l), q,(2) are spherical spinors, and q=( l )  has angular momentum j = 8 and 
q,@) h a s j  = $. The coupled equations for the radial functions F and '3 are 

($ + g ( 2 )  - (E ,  + V +  mcz)g(*)  = &) 1 * (27) 

In  terms of the functions F(l), W1), 9(2) and gC2)  the required sum is 

S-2 = $ S (9(l)*rg(r)1/2 +9(l)*rf(r)\/2+ W2)*rg(Y) + F(')*yf(Y))r2 dr (28) 

after the angular integrations are carried out. Equation (28) is the analogue to equation (10) 
in the non-relativistic theory. 

3. The radial equations 
The radial equations (24)-(27) are simplified by the substitutions 

when the explicit forms forf and g (equations (16) and (17)) are substituted on the right- 
hand sides of equations (24)-(27). Changing the variable to x and inserting the values of 
m, E, and V ,  namely 

1 
mcz = -fica,-l 

U 

Y E,  = -fica,-l 
'1. 

'1. 

x 
V = - -hca,-l 

the radial equations (24) and (25) become 

and the radial equations (26) and (27) become 
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Further simplification follows from the substitutions 

F + G  
2 

= x-1 e-x- (35) 

(36) 

The  four equations for the new F’s and G’s are 

In  terms of these functions the required sum S-z becomes 

4. Solutions for F2), G(*) and evaluation of S-,(*) 
The equations for the x@)  part of the perturbed wave function have much simpler 

solutions than the equations for the x ( l )  part. This is because the substitutions (35) and (36) 
have decoupled FC2) from G(2), as can be seen in the form of equation (39). The  particular 
solutions required are 

2 Y - 1  2 7 - 2  
F‘2’ = - __- xy+2+-  y(2y+ 1)xY 

3 l + y  3 

X Y  + 1 + __ ( 2 y  + 1)xY. 

(4-4) 

(45) 

and 
2Y-1 2 Y - 2  

3 3 
G(2) = 

The non-relativistic limit is obtained by letting y -+ 1 ( a  -+ 0). In  equation (43) one sees 
that the combination F -  G survives in this limit; in fact 

Thus 

(48) 
1 
3 

= - x (non-relativistic S - z ,  equation (10)). 
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We shall see in 
is 8 of the non-relativistic S-2 as given in equation (10). 

into equation (43) and integrating gives 

5 that the contribution of the (1) part of the perturbed wave function 

I t  is not difficult to compute the exact value of S - 2 ( 2 ) .  Inserting equations (44) and (45) 

(49) 
8 - 2 2 ,  = Y(Y + 1)(2Y + 1)(4Y + 5 )  

36 

5 .  Solutions for S - t l )  and Sd2 to order U* 
Equations (37) and (38) are two inhomogeneous coupled equations for F1) and G'l) 

and they cannot be solved so simply as the equations for F2) and G"). By elimination it is 
possible to find second-order inhomogeneous equations for F'l) and G'l) separately. They 
are 

dZF(1) dF(l) 
dx2 dx 

X 2 -  - x(2x - 1) ___ - ((4 - 2) - 2 y x } P  

and 

These equations have been investigated by one of us (Bartlett 1969). The  particular 
integrals which are obtained by a series method are combinations of generalized hyper- 
geometric functions 2 F 2 ( ~ 1 ,  r,; pl, p2; 2x) which are exponentially increasing at infinity. 
So, in this case, a contribution is required from the complementary functions which are 
confluent hypergeometric functions. However, the non-relativistic equations, obtained 
by letting y -+ 1, namely 

and 

have the simple particular solutions 

From these the non-relativistic contribution to S - , ( l ) ,  equation (42), can be found, namely 

2 
3 

= - x (non-relativistic SW2, equation (10)). 
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I t  follows from equations (42) and (43) that the only combination of F’s and G’s required 
is F - y G. In  fact if 

then 

If we eliminate F1) in favour of H the differential equations (37) and (38) become 

dG H G -+-+2y- -2G = 
dx x X 

and 
d H  H 3(1-y2)G 

~ -2y-+ +2yG = 0 
dx X X 

where 

We note that equation (62) is homogeneous. Finally, the substitution 

H(x)  = dxY+lh(x) 

gives for the differential equation for h(x)  

(59) 

Since it is sufficient, because u2 is so small, to find the corrections to 5’-, of order u2 a 
perturbation approach was made in order to find the appropriate solution to this equation. 
When y -f 1 the differential equation becomes 

in complete analogy to equation (13) in the non-relativistic theory. The non-relativistic 
solution with the correct boundary conditions is 

X 
ho = -+1 

2 

and equation (65) was solved to find the next term in u2 by making the substitution 

h = h0+a2+(x) (68) 
and keeping terms in 2. The solution which does not get exponentially large at infinity 
and is square integrable with the appropriate weight as in equation (60) is 

+(x) = - --+--+- 9 1  3 1  3 - - x - - 3 (-+--+---(ln2s+C- 1 2 2  
32x3 16x2 8 4 16 x3 x2 

E,(2x) is the exponential integral 
(2xY 

E1(2X) = -c- In2x- 2 (-1)n- 
os 

n = l  n x n !  
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and C is Euler's constant. Thus, to order ct2, 

65 
24 

N 3- -2. 

Finally, collecting the two contributions S -  2 ( 1 ) ,  equation (72), and S - 2 ( 2 ) ,  equation (50), 
the required value of S-2 is 

= 4.499 752. . . . (73) 
S - 3  is also calculable by this method and again the result differs by terms of the order 

of tc2 for the Dirac equation from the value 10.75 for the Schrodinger equation. 
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